Deep Learning
Deep Learning in Physics
Papers
A more comprehensive list of resources can be found here (more related to condensed matter physics)
Basics
- Machine learning and the physical sciences, arXiv:1903.10563
- A high-bias, low-variance introduction to Machine Learning for physicists,
Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexandre G.R. Day, Clint Richardson, Charles K. Fisher, David J. Schwab. arXiv:1803.08823
Specific Topics
- Neural Network Renormalization Group, Shuo-Hui Li, Lei Wang. arXiv:1802.02840
- Mutual Information, Neural Networks and the Renormalization Group. Maciej Koch-Janusz, Zohar Ringel. arXiv:1704.06279
- Why does deep and cheap learning work so well? Henry W. Lin (Harvard), Max Tegmark (MIT), David Rolnick (MIT). arXiv: 1608.08225
- Accelerate Monte Carlo Simulations with Restricted Boltzmann Machines. Li Huang, Lei Wang. arXiv:1610.02746
- Discovering Phase Transitions with Unsupervised Learning, Lei Wang. arXiv:1606.00318
Confs and Workshops
Deep Learning in HEP
An active list maintained by IML working group can be found here
Papers
- Machine Learning in High Energy Physics Community White Paper, arXiv:1807.02876. [inspire]
Model Inference
- A Guide to Constraining Effective Field Theories with Machine Learning,
Johann Brehmer, Kyle Cranmer (New York U.), Gilles Louppe (Liege U.), Juan Pavez (Santa Maria U., Valparaiso). arXiv:1805.00020. [inspire]. Main letter: https://arxiv.org/abs/1805.00013
Jet Physics
See relevant blocks in another repository: jet-physics-notes
Signal Detection
- CWoLa Hunting: Extending the Bump Hunt with Machine Learning,
Jack H. Collins (Maryland U. & Johns Hopkins U.), Kiel Howe (Fermilab), Benjamin Nachman (UC, Berkeley & LBL, Berkeley).
arXiv:1805.02664 [inspire]
Domain Adaption
- Learning to Pivot with Adversarial Networks,
Gilles Louppe (New York U. (main)), Michael Kagan, Kyle Cranmer (New York U.).
arXiv:1611.01046. [inspire]
- Domain-Adversarial Training of Neural Networks, Yaroslav Ganin, et al. arXiv:1505.07818.
Pile-up Mitigation
- Pileup Mitigation with Machine Learning (PUMML),
Patrick T. Komiske, Eric M. Metodiev (MIT, Cambridge, CTP), Benjamin Nachman (LBL, Berkeley), Matthew D. Schwartz (Harvard U., Phys. Dept.). arXiv: arXiv:1707.08600. [inspire]
Conferences and Workshops