ML4LHC-Tutorial
Data Preparation
-
MadGraph: event generation. A summer school reference slides: https://indico.ihep.ac.cn/event/7822/contribution/19/material/slides/0.pdf
-
Pythia: parton shower – numpythia: The interface between PYTHIA and NumPy
- Delphes: fast detector simulation
- Run Delphes without Pythia : instructions here
-
FastJet: jet clustering – PyJet: The interface between FastJet and NumPy
- Instructions on generating events on a cluster with pbs scheduler: [Running MadGraph on the cluster]
Public Datasets
Data Analysis
- Framework: ROOT
- c++: with ExRootAnalysis https://cp3.irmp.ucl.ac.be/projects/ExRootAnalysis/wiki/UserManual
- Python: PyROOT Tutorial. And here is an example for PyROOT
- HSF
- Reweighting: https://hsf-training.github.io/analysis-essentials/advanced-python/7DemoReweighting.html
- root2hdf5: convert root TTrees into HDF5 tables.
- uproot (https://indico.cern.ch/event/686641/contributions/2894906/attachments/1606247/2548596/pivarski-uproot.pdf) /root_numpy
- h5py to create hdf5 files more “machine learning-friendly” than .root file
Deep Learning
- Deep Learning Course repository of Gilles Louppe: https://github.com/glouppe/info8010-deep-learning
- Introduction and basic workflow of DL4HEP: https://github.com/stwunsch/iml_tensorflow_keras_workshop
Exercises
Dataset
[to be setup. candidate: zenodo]
Playground
- Basic data generation and analysis: [Exercise01]
- advanced: tt~ generation
- Jet clustering
- Produce standard h5 files
Cluster Tips
- Basic usage
- Easily use jupyter notebook on a cluster: https://josephpcohen.com/w/jupyter-notebook-and-hpc-systems/
References
- Scikit-HEP: a toolset of Python packages for particle physics.
- A high-bias, low-variance introduction to Machine Learning for physicists,
https://arxiv.org/abs/1803.08823